
CPS311 Lecture:  Hardware Support for Parallelism 

Last revised November 23, 2015
Objectives:

1. To introduce the basic idea of parallelism
2. To introduce Flynn’s taxonomy
3. To introduce various SIMD approaches (Vector processors, MMX) 
4. To introduce various MIMD approaches using multiple CPUs (Shared memory 

- UMA and NUMA - and message passing )
5. To introduce multicore CPU’s
6. To introduce the use of hardware-supported threads
7. To introduce Hyper-Threading
8. To introduce the use of GPU’s as general purpose processors, including CUDA

 Materials: 

1. Projectable of Moore's Law (as of 2015)
2. Projectable of Moore's Law and other trends (as of 2011)
3. Projectable of Chip Real Estate Tradeoff
4. Projectable of Amdahl’s law for various values of P
5. Projectable of Null Figure 9.5 (Crossbar switch)
6. Projectable of Null Figures 9.6, 9.7 (Interchange switch)
7. Projectable of Intel Quick Path Architecture
8. Projectable of Null Figure 9.3 (Message passing structure alternatives)
9. Projectable of CUDA Flow
10. CUDA Example program - handout + ability to demo

I.Introduction

A. Today's computers are orders of magnitude faster than those of a
generation ago.  Nonetheless, there is a continuing demand for ever 
faster computers.

Why? ASK

1. Reasons fall into two broad categories:
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a. The need to handle a greater volume of task per unit of time.

Example: Various kinds of server systems.

b. The need for greater speed to allow performing computations that 
otherwise would not be feasible, or could not be done as well as 
would be desirable.

Example: Weather forecasting relies on computer simulations that 
model a region (including the atmosphere above it) by breaking it 
into a grid of smaller gridboxes, which are initialized to observed 
data at the start of the period being modeled.  Then the process 
moves forward by calculating new values for each gridbox in terms 
of its own values and those in its neighbors at discrete time intervals.

1. The smaller the gridboxes and the shorter the time steps, the 
more accurate are the predictions derived from the model.  

2. Of course, such a model is useless if the time needed to perform the 
computation is too long.  (Of what value is an accurate forecast of 
tomorrow’s weather if it is not available until the day day after!)  

3. Speed of computation effectively limits the precision of the model in 
terms of the side of the gridboxes and the size of the time intervals.  
(For example, current models are forced to use gridboxes that are 
actually larger than features like individual clouds) 

4. There are numerous potential applications for simulation in the 
sciences that are just becoming or are not yet feasible due to the 
need for faster hardware.

2. Broadly speaking, there are two general approaches to this issue:

a.  Build machines that can perform a single task more quickly (faster 
computers).

i. For much of the history of computing, a trend has held that was 
first described by Gordon Moore (a co-founder of Intel) in 1965: 
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“The number of transistors that can be inexpensively placed on 
an integrated circuit doubles approximately every two years”.  
[Moore’s original statement had the doubling occurring every 
year, but doubling every two years fits the historic data better ] 

(This is called Moore’s Law)

ii. Though the rate of doubling has been closer to once every two 
years, the technological advances described by Moore’s law have 
yielded increased complexity for CPU chips for five decades

PROJECT: Moore's Law as of 2015 (http://
education.mrsec.wisc.edu/SlideShow/images/computer/
Moores_Law.png)

iii. However, clock speed, that was  increasing dramatically along 
with transistor count has been flattened in recent years 

PROJECT: Other trends graph (source: Article “The Free Lunch 
is Over” - http://www.gotw.ca/publications/concurrency-ddj.htm 
accessed 6/3/11) 

iv. We discussed another approach when we talked about such 
strategies as pipelining/superpipelining and the use of superscalar 
architectures.  

(a) This approach is called Instruction-Level-Parallelism.  The 
idea is to make the average time for executing an instruction 
smaller by doing portions or all of the same instruction in 
parallel.

(b)  This is shown as the “performance per clock (ILP)” line on 
the graph just projected.  Note that it too is flattening out - 
these strategies are limited by inherent dependencies between 
successive instructions. 
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b. The growingly-important alternative is to build systems that do 
multiple things at the same time: full parallelism - which is the topic 
we are looking at now.

i. In this series of lectures we are focussing on larger-scale forms of 
parallelism, through such strategies as building multicore 
computers or using multiple computers.

ii. One very important difference between what we are looking at 
today and ILP is that the various ILP strategies are designed to be 
invisible to the programmer - i.e. the hardware or the compiler 
ensures that it appears to the programmer that the instructions in 
the program are being executed in order, even if they are not.  
But with full parallelism, it becomes necessary for the 
programmer to be consciously aware that code is being executed 
in parallel. 

This leads to a need to learn to think differently about 
programming - to use “parallel thinking”.

c. There is necessarily a tradeoff between these two approaches.  

i. For example, for a system with a single CPU chip (most systems 
today), the choice is whether to use the limited “real estate” on 
the chip to build a faster processor or to build multiple processors 
(or portions of a processor) that are slower but get more total 
work accomplished than a single, faster processor could do - or 
perhaps to build fewer but faster or more but slower cores.

PROJECT: Chip Real Estate Tradeoff

(a) The figure on the left shows a superscalar CPU with four 
sophisticated ALU’s, a large cache memory, and a fairly 
complex control unit.

(b)The figure on the right shows a Graphics Processor (GPU) 
with 8 much simpler processors - each with its own small 
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cache and 16 much simpler ALU’s.   (We will see shortly that 
GPU’s, though originally designed for graphics operations, 
are now proving to be very powerful devices for handling 
certain kinds of general-purpose computing problem.)

ii. It is also possible to build systems using multiple CPU’s.  In this case, 
the tradeoff may be between using one (or a few) very fast CPU’s or a 
larger number of slower but cheaper CPU’s.  In many cases, it turns out 
the latter approach actually yields the most economical solution.

B. When we look at parallelism, we need to realize that tasks differ widely in 
terms of how useful parallelism is for speeding them up.

1. Recall definitions that we discussed in CPS222:

a. The speedup of a parallel computation is the ratio of the time taken 
for doing the computation sequentially to the time taken for doing it 
in parallel.

b. Linear speedup means that we can achieve a speedup of n when 
using n processors - presumably the best speedup possible.

2. Suppose we have a task that takes a certain amount of time on a single 
processor.   What will the speedup be if we perform the same task on a 
parallel system with n processors operating at the same time?

a. If the task is perfectly parallelizable, the speedup would be n.

Example: if one person takes four days to paint a house (one day on 
each side), then potentially the same task could be done by four 
people in just one day (a 4:1 speedup.)

b. On the other hand, there are tasks for which nothing would be 
gained by the use of parallelism

Example: consider the task of producing a depth-first ordering of the 
nodes of a graph, given a representation such as an adjacency matrix 
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or adjacency list.  It can be proved that such a task is inherently 
sequential - i.e. there is no way way to improve the time complexity 
to better than O(n) by the use of parallelism. 

c. Of course, most tasks like somewhere between these two extremes - 
i.e. part of the task is parallelizable and part of the task must be done 
sequentially.

Example: even the task of painting a house requires some 
preliminary work such as buying the paint.

3. Recall that the potential speedup for a given task using parallelism is 
strongly dependent on how much of the task is parellelizable and how 
much is not.  A formula known Amdahl’s law says that in a task where 
S is portion of the total time needed for the task that is inherently 
sequential and P is the portion of the total time that is parallelizable (so 
S + P = 1), then the speedup resulting from using n processors will be
	      1
-------------
(1 - P) + P/n

Example: Suppose 95% of the time needed for a given task is spent 
doing work that can be parallelized but 5% is spent on inherently 
sequential work.  If the parallelizable part is speeded up by a factor of 
10 (say by using 10 processors), then the overall speedup is
	        1                 1
-------------------- = ---------- = 6.9
(1 - .95) + (.95)/10   .05 + .095

But now suppose 50% of the time needed is spent doing work that can 
be done using parallelism, and 50% of the time is spent on inherently 
sequential work.  If the parallel part is speeded up by a factor of 10, the 
overall speedup is only
	        1                 1
-------------------- = --------- = 1.82
(1 - .50) + (.50)/10   .50 + .05
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a. A corollary is that the maximum possible speedup for the task (obtained 
if an infinite speedup were applied to the parallelizable portion) is

    1
----------
 (1 - P)

Example: for the first case cited above, the maximum possible speedup 
is 20:1, which would be achieved if the time for the non-parallelizable 
portion remained the same, while the time for the parallelizable part 
dropped to 0.  But in the second case, the maximum possible speedup is 
only 2:1.

b. The implications of Amdahl’s law can be seen graphically.

PROJECT: Graph showing Amdahl’s law results for various values 
of P

c. A further issue to bear in mind is that even the parallelizable part of 
a task may inherently limit the degree of speedup.

It is not always the case that a task consists of a perfectly 
parallelizable part and a perfectly sequential part - sometimes there 
is a portion that is partially but not fully parallelizable.  

Example: We have argued that the task of painting a house could be 
speeded up by a factor of four by using 4 painters.  But what would 
happen if we tried to use 1000 painters?

3. Parallelism is most obviously usable in two cases:

a. Where we have a task that consists of numerous independent parts 
that can be done in parallel.

Example: various sorts of server tasks, where the work to be done 
for each client is independent of the work being done for other 
clients
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b. Where we have a task where the bulk of the time is spent on an 
easily parallelizable portion, with some purely sequential steps at the 
beginning and/or end.

Example: simulations such as the weather forecasting model we 
discussed earlier, where

i. We initially set up the data - a sequential task

ii. The bulk of the time is spent on the computations for each 
gridbox, which can be assigned to separate processors with 
minimal interaction only with immediate neighbors, and 
therefore can be done in parallel.

iii. A final sequential process “harvests” the results.

c. A major challenge is discovering the potential for parallelism in a 
task that at first looks to be sequential in nature, but does have some 
part(s) that could be speeded up by the use of parallelism. 

4. Because we are rapidly moving toward reliance on parallelism for 
speedup, it is vital to learn to “think parallel” as we look at problems.  
(Recall our discussion of parallel algorithms in CPS222)

5. Sometimes, applications are classified based on the possibility of 
breaking them into parallelizable subtasks

a. An application may be inherently sequential - it has no parallelizable 
subtasks.

b. An application may allow fine-grained parallelism - which means 
that part of it can be broken into subtasks, but those subtasks need to 
coordinate/communicate frequently (many times per second)
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c. An application may exhibit coarse-grained parallelism- which means 
that part of it can be broken into subtasks, but those subtasks need to 
coordinate/communicate less frequently.

d. An application may be classified as embarrasingly parallel - which 
means that part of it can be broken into subtasks that rarely or never 
need to coordinate/communicate with each other.

C. Before looking at various ways hardware can be designed to support 
parallelism, we want to look at a system for classifying parallel systems, 
known as FLYNN'S TAXONOMY.  This system goes back to the  1960’s, 
but still has considerable relevance today.

Flynn's taxonomy classifies systems by the number of instruction streams 
and data streams being processed at the same time.

1. Computers of the sort we have discussed up until now - i.e. single 
processor computers - are classified as SISD. A SISD machine has a 
Single Instruction Stream and a Single Data Stream - it executes one 
sequence of instructions, and each instruction works on one one set of 
operands.

2. A SIMD machine has a Single Instruction Stream and Multiple Data 
Stream - it executes one sequence of instructions, but each instruction 
can work on several sets of operands in parallel.  (We will look at 
several approaches that fall into this category shortly).

3. A possibility that doesn't really exist except in very special cases is 
MISD (multiple instruction stream, single data stream - i.e. one stream 
of data passes through the system, but each item of data is operated on 
by several instructions.

4. A MIMD machine has Multiple Instruction Streams, each operating on 
its own Data Stream.  

a. One variant of this approach is the use of a multi-core CPU
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b. Another variant is to use multiple separate CPU's.  This is 
commonly known as a multiprocessor system.

There are a number subcategories under this general heading that we 
will consider later.

(Note: sometimes the term MIMD is reserved for this latter 
approach)

c. The most frequently used approach to MIMD is given the special 
name SPMD - Single Program Multiple Data.  This is a 
multiprocessor in which all the processors execute the same program 
but may do different computations because of the presence of 
conditional branches in the program.

One place this is increasingly seen is the use of a (possibly multi-
core CPU) in conjunction with an array of graphics processors 
utilized for general-purpose computation.

II.SIMD Approaches

A. One class of SIMD machines is the class of Vector processors.  Vector 
processing is combined with other strategies in the largest supercomputers; 
but most desktop/laptop CPU's include vector processing instructions that 
incorporate the basic idea into the ISA of a conventional CPU; and some 
video game systems utilize vector processing.

1. A vector may be a one-dimensional sequence of values, or a one-
dimensional mapping of a higher-dimensionality structure.

Example: the 2-dimensional array

1 2 3
4 5 6

might be represented by the vector 1 2 3 4 5 6
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2. Common operations on vectors include things like adding, subtracting, 
multiplying, or dividing corresponding elements of two vectors to 
produce a third vector result

Example 1 2 3 4 5 6 + 7 8 9 10 11 12 = 8 10 12 14 16 18

3. Vector processors are provide support for performing operations like 
these on vectors.  Most vector processors have two distinct hardware 
features:

a. a set of vector registers, each of which can hold some number of 
values comprising a vector.

(Actually, some vector processors have been built that allow vector 
operations to be performed directly on operands in memory, 
avoiding the need for these)

b. a pipelined ALU that can start a new element of a vector through the 
ALU on each clock.  Thus, to add two 1000 element vectors, the 
processor needs 1000 + a few startup clock cycles.

4. A vector processor  has two different kinds of instruction in its 
instruction set:

a. Ordinary scalar instructions that operate on a single set of scalar 
operands to produce a single scalar result.

b. Vector instructions that carry out an operation on a set of vector 
operands to produce a vector result.  

i. Special load store instructions support copying a vector between 
memory and a vector register.  
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(a) Of course, if the vector is very large, it might need to be 
processed due to limitations on the number of elements a 
vector register can store.

(b) If the processor allows vector operations to access memory 
directly, these instructions may not be needed.

iii. Vector computations like vector addition, which pipe entire 
vectors through the ALU, so that the operation in question is 
applied to corresponding elements of each vector. Once the 
pipeline is filled, it is usually possible to produce one result per 
clock period.

Example: Suppose a is a vector of n elements and we want to 
double each element

4. On a conventional CPU, this might be done by a loop like the 
following

for (int i = 0; i < n; i ++)
	a[i] *= 2;

Which would require execution time n x the time for one iteration 
of the loop

5. On a vector processor, this could be done by as little as one 
instruction, which would need to specify (among other things) the 
starting address in memory of the vector and the number of 
elements in the vector

• On the first clock cycle, the vector processor would start a[0]  
through the pipe.
• On the second clock cycle, the vector processor would start a[1]  
through the pipe, while a[0] would move on to stage 2 of the pipe.
• On the third clock cycle, the vector processor would start a[2]  
through the pipe, while a[0] would move on to stage 3 of the pipe 
and a[1] would move on to stage 2.
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....
• Eventually, after as many clocks as there are stages in the pipe,   
2*a[0] would emerge from the pipe and be stored back into 
memory.
• On each subsequent clock, one doubled value would emerge from 
the pipe while another would be started, until, on the (n + # of 
stages in the pipe - 1) th cycle the final doubled value would 
emerge from the pipe and be stored back into memory.

Thus, the total execution time would be n + s - 1 clocks (where s is 
the number of stages in the pipe) - which would be significantly 
less than n * number of clocks needed for a loop iteration.

6. Actually, this example assumes that the vector processor can 
operate directly on values stored in memory.  Historically, that 
was true of some processors, but most required that the vector 
first be loaded into a vector register, and that the result be placed 
in a vector register from which it is stored back into memory. 

a. The instructions for loading and storing the vector registers 
might themselves be pipelined, or it might be possible to load/
store an entire register from/to adjacent locations in memory 
with a single instruction.

b. In this case, though, a loop would still be needed if the size of 
the vector exceeded the size of the vector registers - as would 
often be the case.  But the number of iterations needed would 
only be (# of elements in vector) / (vector register size), rather 
than (# of elements in the vector).

B. As an example of vector processing instructions that are part of the ISA of 
a conventional CPU, we will look at the Streaming SIMD Extensions (SSE 
instructions) that have been part of the x86 architecture since 1999.   
(Actually, we will look at SSE4, which is the most recent update of this 
instruction set.)
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1. x86 chips include 8 registers (xmm0 through xmm7) to support SSE.  Each 
is a 128 bit register that can be used to hold any one of the following

a. A vector of 16 8-bit bytes

b. A vector of 8 16-bit shorts

c. A vector of 4 32-bit integers or 32-bit floats

d. A vector of 2 64-bit doubles

2. x86 chips support the following instructions (among others)

a. Load an mmx register from a series of locations in memory

b. Store an mmx register into a series of locations in memory

c. Copy values between mmx registers

d. Perform an arithmetic operation (+, -, *, /) between values in two 
mmx registers.  These instructions can operate on any kind of vector 
that can be stored in an mmx register - e.g. 16 one-byte integers or 8 
two-byte integers or 4 four-byte integers or floats ..

e. Perform an arithmetic operation (+, -, *, /) between the values in an 
mmx registers and a scalar. 

f. Compare the values in two mmx registers, producing a vector of 
booleans

g. .... 

3. An earlier - and more limited - part of the x86 ISA is something called 
MMX (multi-media extension).  The name comes from the fact that 
media processing often calls for doing the same operation on 1000‘s of 
values - e.g. processing all the samples in a sound or all the pixels in a 
picture.
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Though still supported in current implementations of x86, in practice 
SSE is used instead.

C. SIMD is most useful for embarrassingly parallel tasks

1. This is why specialized vector processors were most common in 
support of applications like weather forecasting or scientific 
simulations.

2. Facilities like SSE and MMX are mostly used for certain specialized 
tasks like those related to graphics / media manipulation. 

III.Multiprocessors

A. Further parallelism can (beyond what we have already discussed) can be 
achieved by using multiple complete CPU's.

1. Sometimes the Flynn classification MIMD is reserved for such systems, 
though - as we shall see - multicore CPUs and the use of GPGPU’s can 
also be considered instances of this classification.  (The Flynn 
taxonomy is dated.)

2. True MIMD machines are distinguished from computer networks 
(which they resemble in having multiple CPU's) by the fact that in a 
network the cooperation of the CPU's is occasional, while in a MIMD 
machine all the CPU's work together on a common task.

B. MIMD systems are further classified by how the CPU's cooperate with one 
another.  MIMD systems can be either based on SHARED  MEMORY or 
on MESSAGE PASSING.

1. In a shared memory system, all the CPU's share physical memory (or at 
least some portion of it) in common.  
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a. They communicate with one another by writing/reading variables  
contained in shared memory.  

b. Actually, it is not necessary for all of memory to be shared. 
Sometimes, each CPU has a certain amount of private local memory, 
but each also has access to shared global memory.

c. A key feature of such a system is the use of a single address  space 
for shared memory - i.e. if address 1000 lies in shared memory, then 
it refers to the same item, regardless of which processor generates 
the address.

d. Contention for access to shared memory limits the number of 
processors that can be connected in such a configuration.  (Generally 
just a few processors).

e. We will say more about shared memory systems shortly.

2. In a message passing based system, each CPU has its own memory,  
and CPU's cooperate by explicitly sending messages to one another.

a. Thus, the different CPU's are connected to one another by some 
form of network.  (But they are considered a single system because 
they are working cooperatively on a common task.) 

b. One kind of system in this category is called MPP - massively 
parallel processing.  Such systems may have 100's or 1000's of 
computers connected by a network and working cooperatively on a 
common task.

C. Further comments about shared memory systems.

1. Three further variations are possible in a shared memory system:
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a. In a Symmetric Multi-Processing Systems (SMP), all the processors are 
identical, and they run under the control of a single operating system.  (A 
multicore computer might be considered an instance of this.)

b. In a Uniform Memory Access system (UMA), the processors may or 
may not be identical, and each runs its own operating system, but the 
time needed to access a given location in memory is the same, 
regardless of which processor accesses it.  

c. In a Non-Uniform Memory Access system (NUMA), a given 
processor may have faster access to some regions of memory than 
others.  This is usually a consequence of different processors 
"owning" different parts of the overall memory, so that some 
accesses are more efficient than others.

2. In any case, some mechanism is needed for SYNCHRONIZING 
accesses to shared memory.  

a. Synchronization mechanisms were discussed in detail in CPS221. 
Recall that, at the heart of most such  mechanisms is the idea of 
LOCKING a data item so that one  processor has exclusive access to 
it during the performance of an operation.

b. We won’t repeat the discussion here.

3. Another key issue is how processors and shared memory are CONNECTED.

a. Conceptually, the simplest connection structured would be a 
common  bus. However, the number of modules that can be 
connected to one bus is limited in practice by problems of BUS 
CONTENTION, since only one processor can be using the bus at a 
time.  

b. It may therefore be desirable to break up the shared memory  into a 
collection of independent modules, such that two processors  may 
access two different modules at the same time.  In this case, we must 
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consider how the various CPU modules  and memory modules are 
connected.

c. Two alternative connection structures that might be used.

1. A structure based on the use of a crossbar switch, which allows 
any CPU to connect directly to any memory module.

PROJECT - Null Figure 9.5

2.  A structure based on the use of interchange switches.

PROJECT - Null Figures 9.6, 9.7

d. In a NUMA system, different processors may “own” different 
portions of memory - though there is still a single address space.

PROJECT: Intel Quick Path Architecture

4. Of course, each processor will still have its own cache (or caches).  
Thus, the number of times a given processor actually accesses the 
shared memory is minimized.  But now a new problem arises, because 
when one processor updates a shared variable, copies of the old value 
may still reside in the caches of other processors.

a. This problem is called the CACHE COHERENCY problem. 

b. One possible solution is to use SNOOPY CACHEs, in conjunction 
with write-through caching.

1. In addition to responding to requests for data from its own 
processor, a snoopy cache also monitors memory connection 
traffic and listens for any memory write being done by another 
process to a location it contains. 

2. When it hears such a write taking place, it either updates or  
invalidates its own copy.
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5. Given the issues of synchronization and cache coherence, one might ask 
why one would use a shared memory instead of a message passing 
system, The basic answer is that it minimizes overhead for inter-
processor communication: the time needed to read or write a shared 
variable is much less than the time needed to send or receive a message.

D. Further Comments About Message Passing Systems

1. In a shared memory system, a program does not need to be conscious of 
where data it accesses actually resides, since there is a single address 
space shared by all processors.  (Though accessing some locations may 
take more time than others in a NUMA system - something which the 
hardware takes care of)

2. But in a message passing system, a program accesses data held by 
another processor by sending a message to it and awaiting a returned 
result.  Thus, the programmer is quite conscious of accessing data 
belonging to another system.

3. One key issue in message-passing architectures is how the processors 
are connected.  Recall that we discussed some possibilities in CPS222.

PROJECT: Null figure 9.3

4. The most widely-used software infrastructure for such systems is MPI - 
Message Passing Interface.  

a. MPI is the defacto standard for scientific computing.

b. It supports programming in Fortran or C.

c. MPI provides abstractions that handle network communication 
issues, so the programmer can focus on the problem to be solved, 
not the mechanics of solving it.

d. MPI  is discussed much more fully in our Parallel Processing elective.

19



E. Another way to classify parallel systems is in terms of hardware 
infrastructure.

1. Historically, parallel systems were specially designed to be parallel 
systems, often making use of the fastest (and therefore most expensive) 
hardware available.

2. However, it is also possible to build parallel systems using relatively 
expensive, off the shelf computers - using quantity to compensate for 
lack of individual speed.

Example: the BEOWULF project is a software infrastructure that can 
turn a heterogenous network of commodity devices (PCs, workstations, 
etc.) into a parallel cluster.

3. It is also possible to build parallel systems using workstations that are 
used for other purposes as well as serving as part of a parallel system - 
so called COW (Cluster of Workstation Systems).

4. Finally, there are projects which utilize donated cycles from huge 
numbers of systems during time when the system is otherwise idle.  
Such a system might make use of a special screen saver that performs 
computation on data accessed over the network when the machine on 
which it is running is otherwise idle, performing tasks ranging from 
SETI to number-crunching in support of cancer research.

F. As we noted earlier, while it is possible in principle for each of the 
computers in a MIMD system to be running a different program, it is often 
the case that all the computers actually run copies of the same program, but 
working on different data.  This approach is sometimes called SPMD 
(single program multiple data) and resembles SIMD.

G. This area is explored in much greater depth in CPS343 - Parallel and High-
Performance Computing.
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IV.Multicore CPUs

A. A multicore chip consists of two or more complete CPU’s (called cores) on 
a single chip (either on a single die, or two or more dies in the same 
package.)

1. Each core has its own ALU and control units, plus its own L1 cache and  
possibly L2 cache as well.   This means that all cores on a chip can be 
executing simultaneously as long as the instructions and data each core 
needs are present in its cache(s).

2. Multiple cores on the same chip share a single bus interface.  This 
means that if two cores need to access code or data that is not in their 
own cache, one will have to wait for the other to finish making use of 
the shared resources.  

B. The first commercial multicore processors were 2-core chips released in 
2001.  Since then, chips with up to 6 cores have become commercially 
available, while chips with as many as 48 cores have been produced in 
research laboratories (and both numbers will grow in the future.)   

C. But how do we make effective use of a multicore CPU in, say, a desktop or 
laptop computer?  

It turns out that the operating system needs to be designed to make use of 
the multiple cores.

1. The simplest way is to assign different applications that are running at 
the same time to different cores - e.g. a music player might be running 
on one core at the same time a word processor is running on another.

a. This is similar to the concept of time-sharing we discussed in 
operating systems, except now the different task are not competing 
for processor time.  

(In some cases, this could be quite beneficial - e..g I used to use a 
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single core computer at home that became quite unresponsive when 
Time Machine backup is running.)

b. But this does nothing to improve the performance of the system for 
an individual application.

2. A better approach is possible if an individual application is 
multithreaded, provided threads are managed by the operating system 
(rather than by a user thread library that runs in a single kernel thread).  
In this case, the operating system can assign different threads to 
different cores.

Example: suppose one is playing a movie as it is being downloaded.  
Typically, at least two threads are involved - a “producer” that is 
downloading the movie, and a “consumer” that is playing it.  Each 
thread could be assigned to a different core.

D. In order for an individual program to make use effective use of a multicore 
CPU, it needs to partition its work into smaller units that can potentially be 
scheduled to run concurrently on multiple cores.

1. One approach is to break the program up into threads (assuming 
threading is managed by the operating system), with different threads 
running on different cores.

2. Other approaches are possible - e.g. Mac OS Snow Leopard (10.6) and 
later versions, and iOS4, utilize a mechanism called “Grand Central 
Dispatch” (GCD) - currently supported for programs written in C, C++, 
or Objective -C.

a. To write a program that uses GCD, the programmer writes it as a 
collection of “blocks”.

b. To operating system maintains a one or more queues for each 
application that hold blocks that are available to run, and schedules a 
block to run when the resources to run it become available.  
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c. This means that two blocks may be running at the same time on a 
dual core machine, or up to four on a quad core machine ...  

1. But the programmer does not need to know how many cores will 
be available on the machine the program will run on - the 
programmer just places runnable blocks in the queue and the 
system runs each block when it becomes possible to do so.

2. It is also possible to designate a block as a handler for a given 
type of event (e.g. in a GUI); the block only becomes runnable 
when the event it handles occurs.

3. It is also possible to create sequences of blocks that need to be 
run in a certain order. 

E. For embarrassingly parallel tasks, though, a much higher degree of 
parallelism than that afforded by multicore chips alone is often desirable.

V.Hardware-Supported Threading

A. We have discussed the use of multiple threads managed by the operating 
system as a strategy for better exploiting the capabilities of a multicore 
system.  Now we look at another use of threads.

B. Ideally, a program would run at the maximum speed allowed by the 
processor - e.g. completing one instruction per clock on a pipelined CPU, 
or perhaps several per clock on a superscalar machine.  But reality is often 
far different from this.

1. Recall that memory accesses can take many clock cycles.

a. L1 cache is designed to run at the same speed as the CPU - so an 
item that is needed from memory is in L1 cache, it can be accessed 
without any loss of time.
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b. But L2 cache is about 10 times slower than the CPU, and main 
memory can be over 100 times slower.

c. Thus, when a program needs to access something that is not in L1 
cache, it will be delayed by perhaps the time needed for hundreds of 
instructions. 

Example: On a system with a 3 GHz clock with a main memory 
access time of 60 ns, a main memory access requires 180 clocks plus 
whatever time is needed for bus overhead.  

2. Actually, at fairly low cost in terms of increased complexity, it is possible 
to design hardware that allows more than one thread to be running on a 
given core at a given time. (Threading needs to be  managed by the 
hardware, not software.)  For example, one possibility is to design a 
processor so that it can be working on two or more threads at the same 
time.

a. At any one time, only one thread will actually be running, of course.

b. But each thread will have its own set of registers and its own stack, 
so context switching from one thread to another can be done with no 
additional accesses to memory needed, and switching between 
threads can be managed by hardware, rather than software.

c. If the currently-running thread performs an operation that requires a 
delay - e.g. access to a memory location not in L1 cache, or an IO 
operation, then the processor can instantly switch to running the 
other thread, so as not to waste any cycles.

d. Since it is possible that both threads might need time-consuming 
operations, it may be desirable to design the processor to support 
more than 2 threads - perhaps 4 or 8 or more

3. Intel refers to its implementation of this approach as Hyper-Threading 
(HT).  When Hyperthreading is turned on for a chip, it appears to the 
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operating system to have twice as many virtual processors as there are 
physical cores, and the operating system is allowed to schedule as 
many threads as there are virtual processors.  (However, Intel 
recommends turning HT off via the Bios when using an HT-enabled 
chip with an operating system that has not been optimized to make the 
best use of this technology, lest overall performance actually suffer.)

4. In practice, in most implementations this is limited to 2 threads per 
core, but up to 8 threads per core have been supported for this strategy 
with some other chips.

VI.General-Purpose Use of Graphics Processors

A. Graphics operations such as translation, rotation, and texturing are good 
candidates for use of parallel processing because they typically involve 
performing the same basic computation for each of the thousands of pixels 
that make up a screen image.  

To support fast graphics. video cards typically incorporate a graphics 
processor chip that contains scores or hundreds of simple processing elements.

PROJECT: Chip Real Estate Tradeoff (again)

B. While GP'U's were initially designed to support the computations needed 
for sophisticated graphics, there has recently been a movement toward 
using them for other sorts of computation as well.  

1. This model is sometimes called GPGPU - General Purpose Computing 
on a GPU.

2. It is well-suited to applications that require a large number of relatively 
simple computational operations - i.e. "number-crunching" sorts of 
applications that occur in the natural sciences, weather forecasting,  
mathematical modeling, and game physics.
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C. One GPGPU architecture is CUDA (Compute Unified Device 
Architecture) that was developed by NVidia to support general-purpose 
computation using their graphics processor chips.

1. The first version was released in 2007.  

2. It is currently available for Windows, Linux, and MacOS.

3. The CUDA software and documentation is free - but it is designed to 
support using chips manufactured by NVidia.

4. The basic architecture of CUDA looks like this

PROJECT: CUDA Flow Diagram

5. Our Linux workstations have sophisticated graphics cards; but even 
ordinary laptops frequently have GPUs that can be used for parallel 
computation.

SHOW on Macintosh Laptop / About This Mac / More Info / - then 
lookup GPU on NVidia web site: http://www.geforce.com/hardware/
desktop-gpus/geforce-gtx-650/specifications - note number of CUDA 
cores.

6. A simple example of GPGPU processing using CUDA

HANDOUT: Demo program - note two programs that do identical 
computation - one using just CPU, one CPU + GPU. 

a. Explain notion of parallel execution of a kernel

b. Note that the program has deliberately been made to use a very 
inefficient approach, in order to more dramatically show the 
difference between sequential version and parallel versions.
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c. DEMO (on Mac) using to factor a large prime; product of large 
primes using Parallel and Sequential versions - compare execution 
times

d. Note that, though the parallel program is much faster than the 
sequential one, it is nowhere near 384 times as fast as one might 
expect from the number of GPU cores we saw earlier.  Why?

ASK

1. The clock rate for the GPUs is less than half that of the CPU.

2. There is considerable overhead involved in moving data between 
the regular memory of the system (used by the CPU) and the 
dedicated memory used by the GPUs.  That is particularly an 
issue in a program like this, where the amount of actual 
computation is quite moderate.

3. The program was not at all structured to take into account the 
hardware architecture of the GPUs.
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